Lie geometry of flat fronts in hyperbolic space
نویسندگان
چکیده
منابع مشابه
Value Distribution of the Hyperbolic Gauss Maps for Flat Fronts in Hyperbolic Three-space
We give an effective estimate for the totally ramified value number of the hyperbolic Gauss maps of complete flat fronts in the hyperbolic three-space. As a corollary, we give the upper bound of the number of exceptional values of them for some topological cases. Moreover, we obtain some new examples for this class.
متن کاملHyperbolic Geometry: Isometry Groups of Hyperbolic Space
The goal of this paper is twofold. First, it consists of an introduction to the basic features of hyperbolic geometry, and the geometry of an important class of functions of the hyperbolic plane, isometries. Second, it identifies a group structure in the set of isometries, specifically those that preserve orientation, and deals with the topological properties of their discrete subgroups. In the...
متن کاملFlat surfaces in the hyperbolic 3-space
In this paper we give a conformal representation of flat surfaces in the hyperbolic 3space using the complex structure induced by its second fundamental form. We also study some examples and the behaviour at infinity of complete flat ends. Mathematics Subject Classification (1991): 53A35, 53C42
متن کاملAn Extension of Poincare Model of Hyperbolic Geometry with Gyrovector Space Approach
The aim of this paper is to show the importance of analytic hyperbolic geometry introduced in [9]. In [1], Ungar and Chen showed that the algebra of the group $SL(2,mathbb C)$ naturally leads to the notion of gyrogroups and gyrovector spaces for dealing with the Lorentz group and its underlying hyperbolic geometry. They defined the Chen addition and then Chen model of hyperbolic geomet...
متن کاملThe Symplectic Geometry of Polygons in Hyperbolic 3-space∗
We study the symplectic geometry of the moduli spaces Mr = Mr(H) of closed n-gons with fixed side-lengths in hyperbolic three-space. We prove that these moduli spaces have almost canonical symplectic structures. They are the symplectic quotients of Bn by the dressing action of SU(2) (here B is the subgroup of the Borel subgroup of SL2(C) defined below). We show that the hyperbolic Gauss map set...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Comptes Rendus Mathematique
سال: 2010
ISSN: 1631-073X
DOI: 10.1016/j.crma.2010.04.018